

Euroopa Liit Euroopa Sotsiaalfond

Eesti tuleviku heaks

Toetab TÜ ja TTÜ doktorikool "Funktsionaalsed materjalid ja tehnoloogiad" (FMTDK)

ESF projekt 1.2.0401.09-0079

INFLUENCE OF SINTERING TECHNIQUES ON PERFORMANCE CHARACTERISTICS OF TIC-BASED CERMETS.

<u>Aleksei Tšinjan¹</u>, Heinrich Klaasen¹, Jackob Kübarsepp¹, Harri Annuka²

¹Department of Material Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia ²Centre of Engineering Graphics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia e-mail: tsinjan@staff.ttu.ee

Abstract.

This paper analyses the influence of sintering techniques (temperature, gas compression during sintering, heat treatment) on the performance characteristics. wear resistance, strength and microstructure of an advanced steel bonded TiC-based cermet, developed in TUT for metalforming application (blanking of sheet metals).

The wear tests were performed by help of a special turning (cutting) method, simulating adhesion wear – wear dominating in blanking of sheet metals.

The positive effect of gas compression (sinter/HIP) and the definitive dependence of performance on sintering parameters and heat treatment were revealed. Optimal technology ensuring maximized wear resistance and strength characteristics were specified.

Table 1. Performance characteristics – adhesive wear resistance L, transverse rupture strength R_{TZ} and hardness HV of TiC-cermet T75/14 sinterhipped at 1430°C under different argon-gas pressure

Characteristic	Gas compression, Bar			
	1	30	60	90
L ₁ , m/mm	1600	2100	2400	2300
R _{TZ} , GPa	1.8	2.2	2.5	2.4
HV, GPa	13.8	13.9	14.0	13.8

References

- 1. Brookes, K. J. *World Dictionary and Handbook of Hard Metals and Hard Materials*. (6th ed.), Int. Carbide Data, London ,1996.
- 2. Klaasen, H. and Kübarsepp, J. Structure sensitivity of wear resistance of hardmetals. *Int. J. Refract.Met. Hard Mater.*, 1997, **15**, 89 98.
- 3. Klaasen, H., Kollo, L. and Kübarsepp, J. Mechanical properties and wear performance of compression sintered TiC-base cermets. *Powder Metall*. 2007, **50** (2), 132 136.
- 4. Kolaska, H., Dreyer, K. and Schaaf, G. Use of the Combined Sintering HIP Process in the Production of Hardmetals and Ceramics. *Powder Metall. Int.*, 1989, **21**, 22 28.
- 5. Moskowitz, D. and Humenik, J. TiC-base cermets for cutting applications, *Mod. Dev. Powder Metall.*, 1985, 14, 307 320.