

Euroopa Liit Euroopa Sotsiaalfond

Eesti tuleviku heaks

Toetab TÜ ja TTÜ doktorikool "Funktsionaalsed materjalid ja tehnoloogiad" (FMTDK)

ESF projekt 1.2.0401.09-0079

LUMINESCENT PROTECTION AGAINST THE CREATION OF FRENKEL DEFECTS AT THE IRRADIATION OF NaCI AND MgO SINGLE CRYSTALS BY VUV RADIATION, ELECTRONS AND SWIFT IONS.

Jevgeni Shablonin

Institute of Physics, University of Tartu, Estonia <u>e-mail</u>: jevgis@ut.ee

The role of hot (nonrelaxed) electron-hole (e-h) pair recombination in Frenkel defect formation in wide-gap solids as well as the way to lower the probability of these recombination via energy transfer to luminescent impurity centers were considered in Ref. 1. The present study is a continuation of these investigations. The complex study of photo- and cathodoluminescense and optical absorption has been carried out for pure MgO and NaCl, as well as for NaCl:Tl⁺ and MgO:Cr⁺ single crystals grown in Tartu [2, 3]. The samples were irradiated by 5-20 eV photons and 5-15 keV electrons at 6-420 K or by 2.14-GeV uranium ions (GSI, Darmstadt) at 300 K.

In KCl crystals at 4.2 K, stable F centers and H interstitials are efficiently created at the decay of anion excitons or at the recombination of relaxed (cold) *e-h* pairs, while hot holes are mainly responsible for the formation of F_2 and F_n centers (see, e.g., [4]). On the other hand, the formation energy of a pair of Frenkel defects exceeds the energy gap in NaCl, $E_{FD} > E_g$. Our recent experiments have confirmed the extremely low efficiency of Frenkel defects creation in NaCl via anion decay or cold *e-h* recombination. At the same time, the efficiency of F-H pairs creation sharply increases at the crystal irradiation by 11-17 eV photons, when the energy of hot photoelectrons is not still sufficient for the formation of secondary *e-h* pairs. The analysis of the creation spectra of F-H pairs (measured by a luminescent method) and the excitation spectra of TI⁺-luminescence in NaCl:TI⁺ [2, 5] allowed to conclude that hot conduction electrons directly excite TI⁺ ions or form near-impurity-localized excitons, thus strongly decreasing the formation of Frenkel defects via hot *e-h* recombination.

Using the methods of synchrotron spectroscopy and low-temperature cathodoluminescence, the peculiarities of the creation of F and F⁺ centers by hot *e-h* recombination have been investigated in MgO and MgO: Cr^{3+} single crystals previously exposed to uniaxial stress at 300 K – both directly plastically deformed or stressed due to the impact mechanism under the crystal irradiation by swift uranium ions (see also [2,4]).

[1] A. Lushchik, Ch. Lushchik, M. Kirm, V. Nagirnyi, F. Savikhin, E. Vasil'chenko, *Nucl. Instr. and Meth. B* 250 (1-2), pp. 330-336, 2006.

[2] A. Lushchik, Ch. Lushchik, T. Kärner, V. Nagirnyi, E. Shablonin, E. Vasil'chenko, *Izv.VUZOV*, *Fizika* (*Russian Physics Journal*) **52**, N 8/2, pp, 95-100, 2009.

[3] A. Lushchik, Ch. Lushchik, T. Kärner, P. Liblik, V. Nagirnyi, E. Shablonin, A. Shugai, E. Vasil'chenko, *Radiat. Meas.*, submitted.

[4] A.Baimakhanuly, E. Vasil'chenko, Ju. Maksimov, L. Pung, E. Shablonin, *Izv.VUZOV, Fizika (Russian Physics Journal)* **52**, N 8/2, pp, 18-21, 2009.

[5] S. Dolgov, A. Kotlov, I. Kudryavtseva, A. Lushchik, V. Nagirnyi, E. Shablonin, E. Vasil'chenko. In: *MAX-LAB Activity Report 2008*, National Laboratory, Lund, Sweden, pp. 96-97, 2009.